
grpc-interceptor

Dan Hipschman

Jul 23, 2020

CONTENTS

1 Reference 1

2 License 7

3 Installation 9

4 Usage 11

5 Testing 13

6 Limitations 15

Python Module Index 17

Index 19

i

ii

CHAPTER

ONE

REFERENCE

• grpc_interceptor.base

• grpc_interceptor.exception_to_status

• grpc_interceptor.exceptions

• grpc_interceptor.testing

1.1 grpc_interceptor.base

Base class for server-side interceptors.

class grpc_interceptor.base.MethodName(package: str, service: str, method: str)
Represents a gRPC method name.

gRPC methods are defined by three parts, represented by the three attributes.

package
This is defined by the package foo.bar; designation in the protocol buffer definition, or it could be defined
by the protocol buffer directory structure, depending on the language (see https://developers.google.com/
protocol-buffers/docs/proto3#packages).

service
This is the service name in the protocol buffer definition (e.g., service SearchService { . . . }.

method
This is the method name. (e.g., rpc Search(. . .) returns (. . .);).

property fully_qualified_service
Return the service name prefixed with the package.

1

https://developers.google.com/protocol-buffers/docs/proto3#packages
https://developers.google.com/protocol-buffers/docs/proto3#packages

grpc-interceptor

Example

>>> MethodName("foo.bar", "SearchService", "Search").fully_qualified_service
'foo.bar.SearchService'

class grpc_interceptor.base.ServiceInterceptor
Base class for server-side interceptors.

To implement an interceptor, subclass this class and override the intercept method.

abstract intercept(method: Callable, request: Any, context: grpc.ServicerContext,
method_name: str)→ Any

Override this method to implement a custom interceptor.

You should call method(request, context) to invoke the next handler (either the RPC method implementa-
tion, or the next interceptor in the list).

Parameters

• method – Either the RPC method implementation, or the next interceptor in the chain.

• request – The RPC request, as a protobuf message.

• context – The ServicerContext pass by gRPC to the service.

• method_name – A string of the form “/protobuf.package.Service/Method”

Returns This should generally return the result of method(request, context), which is typically
the RPC method response, as a protobuf message. The interceptor is free to modify this in
some way, however.

intercept_service(continuation, handler_call_details)
Implementation of grpc.ServerInterceptor.

This is not part of the ServiceInterceptor API, but must have a public name. Do not override it, unless you
know what you’re doing.

grpc_interceptor.base.parse_method_name(method_name: str) →
grpc_interceptor.base.MethodName

Parse a method name into package, service and endpoint components.

Parameters method_name – A string of the form “/foo.bar.SearchService/Search”, as passed to
ServiceInterceptor.intercept().

Returns A MethodName object.

Example

>>> parse_method_name("/foo.bar.SearchService/Search")
MethodName(package='foo.bar', service='SearchService', method='Search')

2 Chapter 1. Reference

grpc-interceptor

1.2 grpc_interceptor.exception_to_status

ExceptionToStatusInterceptor catches GrpcException and sets the gRPC context.

class grpc_interceptor.exception_to_status.ExceptionToStatusInterceptor(status_on_unknown_exception:
Op-
tional[grpc.StatusCode]
=
None)

An interceptor that catches exceptions and sets the RPC status and details.

ExceptionToStatusInterceptor will catch any subclass of GrpcException and set the status code and details on
the gRPC context.

Parameters status_on_unknown_exception – Specify what to do if an exception which is
not a subclass of GrpcException is raised. If None, do nothing (by default, grpc will set the
status to UNKNOWN). If not None, then the status code will be set to this value. It must not
be OK. The details will be set to the value of repr(e), where e is the exception. In any case, the
exception will be propagated.

Raises ValueError – If status_code is OK.

intercept(method: Callable, request: Any, context: grpc.ServicerContext, method_name: str) →
Any

Do not call this directly; use the interceptor kwarg on grpc.server().

1.3 grpc_interceptor.exceptions

Exceptions for ExceptionToStatusInterceptor.

See https://grpc.github.io/grpc/core/md_doc_statuscodes.html for the source of truth on status code meanings.

exception grpc_interceptor.exceptions.Aborted(details: Optional[str] = None, sta-
tus_code: Optional[grpc.StatusCode] =
None)

The operation was aborted.

Typically this is due to a concurrency issue such as a sequencer check failure or transaction abort. See the guide-
lines on other exceptions for deciding between FAILED_PRECONDITION, ABORTED, and UNAVAILABLE.

exception grpc_interceptor.exceptions.AlreadyExists(details: Optional[str] =
None, status_code: Op-
tional[grpc.StatusCode] =
None)

The entity that a client attempted to create already exists.

E.g., a file or directory that a client is trying to create already exists.

exception grpc_interceptor.exceptions.Cancelled(details: Optional[str] = None, sta-
tus_code: Optional[grpc.StatusCode]
= None)

The operation was cancelled, typically by the caller.

exception grpc_interceptor.exceptions.DataLoss(details: Optional[str] = None, sta-
tus_code: Optional[grpc.StatusCode] =
None)

Unrecoverable data loss or corruption.

1.2. grpc_interceptor.exception_to_status 3

https://grpc.github.io/grpc/core/md_doc_statuscodes.html

grpc-interceptor

exception grpc_interceptor.exceptions.DeadlineExceeded(details: Optional[str] =
None, status_code: Op-
tional[grpc.StatusCode] =
None)

The deadline expired before the operation could complete.

For operations that change the state of the system, this error may be returned even if the operation has completed
successfully. For example, a successful response from a server could have been delayed long.

exception grpc_interceptor.exceptions.FailedPrecondition(details: Optional[str] =
None, status_code: Op-
tional[grpc.StatusCode]
= None)

The operation failed because the system is in an invalid state for execution.

For example, the directory to be deleted is non-empty, an rmdir operation is applied to a non-directory, etc. Ser-
vice implementors can use the following guidelines to decide between FAILED_PRECONDITION, ABORTED,
and UNAVAILABLE: (a) Use UNAVAILABLE if the client can retry just the failing call. (b) Use ABORTED
if the client should retry at a higher level (e.g., when a client-specified test-and-set fails, indicating the client
should restart a read-modify-write sequence). (c) Use FAILED_PRECONDITION if the client should not retry
until the system state has been explicitly fixed. E.g., if an “rmdir” fails because the directory is non-empty,
FAILED_PRECONDITION should be returned since the client should not retry unless the files are deleted from
the directory.

exception grpc_interceptor.exceptions.GrpcException(details: Optional[str] =
None, status_code: Op-
tional[grpc.StatusCode] =
None)

Base class for gRPC exceptions.

Generally you would not use this class directly, but rather use a subclass representing one of the standard gRPC
status codes (see: https://grpc.github.io/grpc/core/md_doc_statuscodes.html for the official list).

status_code
A grpc.StatusCode other than OK. The only use case for this is if gRPC adds a new status code that isn’t
represented by one of the subclasses of GrpcException. Must not be OK, because gRPC will not raise an
RpcError to the client if the status code is OK.

details
A string with additional informantion about the error.

Parameters

• details – If not None, specifies a custom error message.

• status_code – If not None, sets the status code.

Raises ValueError – If status_code is OK.

property status_string
Return status_code as a string.

Returns The status code as a string.

4 Chapter 1. Reference

https://grpc.github.io/grpc/core/md_doc_statuscodes.html

grpc-interceptor

Example

>>> GrpcException(status_code=StatusCode.NOT_FOUND).status_string
'NOT_FOUND'

exception grpc_interceptor.exceptions.Internal(details: Optional[str] = None, sta-
tus_code: Optional[grpc.StatusCode] =
None)

Internal errors.

This means that some invariants expected by the underlying system have been broken. This error code is reserved
for serious errors.

exception grpc_interceptor.exceptions.InvalidArgument(details: Optional[str] =
None, status_code: Op-
tional[grpc.StatusCode] =
None)

The client specified an invalid argument.

Note that this differs from FAILED_PRECONDITION. INVALID_ARGUMENT indicates arguments that are
problematic regardless of the state of the system (e.g., a malformed file name).

exception grpc_interceptor.exceptions.NotFound(details: Optional[str] = None, sta-
tus_code: Optional[grpc.StatusCode] =
None)

Some requested entity (e.g., file or directory) was not found.

Note to server developers: if a request is denied for an entire class of users, such as gradual feature rollout or
undocumented whitelist, NOT_FOUND may be used. If a request is denied for some users within a class of
users, such as user-based access control, PERMISSION_DENIED must be used.

exception grpc_interceptor.exceptions.OutOfRange(details: Optional[str] =
None, status_code: Op-
tional[grpc.StatusCode] = None)

The operation was attempted past the valid range.

E.g., seeking or reading past end-of-file. Unlike INVALID_ARGUMENT, this error indicates a prob-
lem that may be fixed if the system state changes. For example, a 32-bit file system will generate IN-
VALID_ARGUMENT if asked to read at an offset that is not in the range [0,2^32-1], but it will generate
OUT_OF_RANGE if asked to read from an offset past the current file size. There is a fair bit of overlap
between FAILED_PRECONDITION and OUT_OF_RANGE. We recommend using OUT_OF_RANGE (the
more specific error) when it applies so that callers who are iterating through a space can easily look for an
OUT_OF_RANGE error to detect when they are done.

exception grpc_interceptor.exceptions.PermissionDenied(details: Optional[str] =
None, status_code: Op-
tional[grpc.StatusCode] =
None)

The caller does not have permission to execute the specified operation.

PERMISSION_DENIED must not be used for rejections caused by exhausting some resource (use RE-
SOURCE_EXHAUSTED instead for those errors). PERMISSION_DENIED must not be used if the caller
can not be identified (use UNAUTHENTICATED instead for those errors). This error code does not imply the
request is valid or the requested entity exists or satisfies other pre-conditions.

exception grpc_interceptor.exceptions.ResourceExhausted(details: Optional[str] =
None, status_code: Op-
tional[grpc.StatusCode] =
None)

Some resource has been exhausted.

1.3. grpc_interceptor.exceptions 5

grpc-interceptor

Perhaps a per-user quota, or perhaps the entire file system is out of space.

exception grpc_interceptor.exceptions.Unauthenticated(details: Optional[str] =
None, status_code: Op-
tional[grpc.StatusCode] =
None)

The request does not have valid authentication credentials for the operation.

exception grpc_interceptor.exceptions.Unavailable(details: Optional[str] =
None, status_code: Op-
tional[grpc.StatusCode] = None)

The service is currently unavailable.

This is most likely a transient condition, which can be corrected by retrying with a backoff. Note that it is not
always safe to retry non-idempotent operations.

exception grpc_interceptor.exceptions.Unimplemented(details: Optional[str] =
None, status_code: Op-
tional[grpc.StatusCode] =
None)

The operation is not implemented or is not supported/enabled in this service.

exception grpc_interceptor.exceptions.Unknown(details: Optional[str] = None, sta-
tus_code: Optional[grpc.StatusCode] =
None)

Unknown error.

For example, this error may be returned when a Status value received from another address space belongs to an
error space that is not known in this address space. Also errors raised by APIs that do not return enough error
information may be converted to this error.

1.4 grpc_interceptor.testing

6 Chapter 1. Reference

CHAPTER

TWO

LICENSE

MIT License

Copyright (c) 2020 Dan Hipschman

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The primary aim of this project is to make Python gRPC interceptors simple. The Python grpc package provides
service interceptors, but they’re a bit hard to use because of their flexibility. The grpc interceptors don’t have direct
access to the request and response objects, or the service context. Access to these are often desired, to be able to log
data in the request or response, or set status codes on the context.

The secondary aim of this project is to keep the code small and simple. Code you can read through and understand
quickly gives you confidence and helps debug issues. When you install this package, you also don’t want a bunch of
other packages that might cause conflicts within your project. Too many dependencies also slow down installation as
well as runtime (fresh imports take time). Hence, a goal of this project is to keep dependencies to a minimum. The
only core dependency is the grpc package, and the testing extra includes protobuf as well.

The grpc_interceptor package provides the following:

• A ServiceInterceptor base class, to make it easy to define your own service interceptors.

• An ExceptionToStatusInterceptor interceptor, so your service can raise exceptions that set the gRPC
status code correctly (rather than the default of every exception resulting in an UNKNOWN status code). This is
something for which pretty much any service will have a use.

• An optional testing framework. If you’re writing your own interceptors, this is useful.

7

grpc-interceptor

8 Chapter 2. License

CHAPTER

THREE

INSTALLATION

To install just the interceptors:

$ pip install grpc-interceptor

To also install the testing framework:

$ pip install grpc-interceptor[testing]

9

grpc-interceptor

10 Chapter 3. Installation

CHAPTER

FOUR

USAGE

To define your own interceptor (we can use a simplified version of ExceptionToStatusInterceptor as an
example):

from grpc_interceptor.base import Interceptor

class ExceptionToStatusInterceptor(ServiceInterceptor):

def intercept(
self,
method: Callable,
request: Any,
context: grpc.ServicerContext,
method_name: str,

) -> Any:
"""Override this method to implement a custom interceptor.

You should call method(request, context) to invoke the
next handler (either the RPC method implementation, or the
next interceptor in the list).

Args:
method: The next interceptor, or method implementation.
request: The RPC request, as a protobuf message.
context: The ServicerContext pass by gRPC to the service.
method_name: A string of the form

"/protobuf.package.Service/Method"

Returns:
This should generally return the result of
method(request, context), which is typically the RPC
method response, as a protobuf message. The interceptor
is free to modify this in some way, however.

"""
try:

return method(request, context)
except GrpcException as e:

context.set_code(e.status_code)
context.set_details(e.details)
raise

Then inject your interceptor when you create the grpc server:

interceptors = [ExceptionToStatusInterceptor()]
server = grpc.server(

(continues on next page)

11

grpc-interceptor

(continued from previous page)

futures.ThreadPoolExecutor(max_workers=10),
interceptors=interceptors

)

To use ExceptionToStatusInterceptor:

from grpc_interceptor.exceptions import NotFound

class MyService(my_pb2_grpc.MyServiceServicer):
def MyRpcMethod(

self, request: MyRequest, context: grpc.ServicerContext
) -> MyResponse:

thing = lookup_thing()
if not thing:

raise NotFound("Sorry, your thing is missing")
...

This results in the gRPC status status code being set to NOT_FOUND, and the details "Sorry, your thing is
missing". This saves you the hassle of catching exceptions in your service handler, or passing the context down into
helper functions so they can call context.abort or context.set_code. It allows the more Pythonic approach
of just raising an exception from anywhere in the code, and having it be handled automatically.

12 Chapter 4. Usage

CHAPTER

FIVE

TESTING

The testing framework provides an actual gRPC service and client, which you can inject interceptors into. This allows
end-to-end testing, rather than mocking things out (such as the context). This can catch interactions between your
interceptors and the gRPC framework, and also allows chaining interceptors.

The crux of the testing framework is the dummy_client context manager. It provides a client to a gRPC ser-
vice, which by defaults echos the input field of the request to the output field of the response. You can
also provide a special_cases dict which tells the service to call arbitrary functions when the input matches
a key in the dict. This allows you to test things like exceptions being thrown. Here’s an example (again using
ExceptionToStatusInterceptor):

from grpc_interceptor.exceptions import NotFound
from grpc_interceptor.exception_to_status import ExceptionToStatusInterceptor
from grpc_interceptor.testing import dummy_client, DummyRequest, raises

def test_exception():
special_cases = {"error": raises(NotFound())}
interceptors = [ExceptionToStatusInterceptor()]
with dummy_client(special_cases=special_cases, interceptors=interceptors) as

→˓client:
Test a happy path first
assert client.Execute(DummyRequest(input="foo")).output == "foo"
And now a special case
with pytest.raises(grpc.RpcError) as e:

client.Execute(DummyRequest(input="error"))
assert e.value.code() == grpc.StatusCode.NOT_FOUND

13

grpc-interceptor

14 Chapter 5. Testing

CHAPTER

SIX

LIMITATIONS

These are the current limitations, although supporting these is possible. Contributions or requests are welcome.

• ServiceInterceptor currently only supports unary-unary RPCs.

• The package only provides service interceptors.

15

grpc-interceptor

16 Chapter 6. Limitations

PYTHON MODULE INDEX

g
grpc_interceptor.base, 1
grpc_interceptor.exception_to_status, 3
grpc_interceptor.exceptions, 3

17

grpc-interceptor

18 Python Module Index

INDEX

A
Aborted, 3
AlreadyExists, 3

C
Cancelled, 3

D
DataLoss, 3
DeadlineExceeded, 3
details (grpc_interceptor.exceptions.GrpcException

attribute), 4

E
ExceptionToStatusInterceptor (class in

grpc_interceptor.exception_to_status), 3

F
FailedPrecondition, 4
fully_qualified_service()

(grpc_interceptor.base.MethodName prop-
erty), 1

G
grpc_interceptor.base

module, 1
grpc_interceptor.exception_to_status

module, 3
grpc_interceptor.exceptions

module, 3
GrpcException, 4

I
intercept() (grpc_interceptor.base.ServiceInterceptor

method), 2
intercept() (grpc_interceptor.exception_to_status.ExceptionToStatusInterceptor

method), 3
intercept_service()

(grpc_interceptor.base.ServiceInterceptor
method), 2

Internal, 5

InvalidArgument, 5

M
method (grpc_interceptor.base.MethodName attribute),

1
MethodName (class in grpc_interceptor.base), 1
module

grpc_interceptor.base, 1
grpc_interceptor.exception_to_status,

3
grpc_interceptor.exceptions, 3

N
NotFound, 5

O
OutOfRange, 5

P
package (grpc_interceptor.base.MethodName at-

tribute), 1
parse_method_name() (in module

grpc_interceptor.base), 2
PermissionDenied, 5

R
ResourceExhausted, 5

S
service (grpc_interceptor.base.MethodName at-

tribute), 1
ServiceInterceptor (class in

grpc_interceptor.base), 2
status_code (grpc_interceptor.exceptions.GrpcException

attribute), 4
status_string() (grpc_interceptor.exceptions.GrpcException

property), 4

U
Unauthenticated, 6
Unavailable, 6
Unimplemented, 6
Unknown, 6

19

	Reference
	License
	Installation
	Usage
	Testing
	Limitations
	Python Module Index
	Index

